
1
Practical Parallel Programming Paradigms: Rajeev Wankar

School of Computer and Information Sciences &

Centre for Modelling, Simulation and Design (CMSD)

University of Hyderabad (IoE institute)

Practical Parallel Programming Paradigms

at

Inter-University Accelerator Centre (IUAC), New Delhi
4-day school on Scientific Computing, Artificial Intelligence and Machine Learning

by

Rajeev Wankar

wankarcs@uohyd.ac.in

2
Practical Parallel Programming Paradigms: Rajeev Wankar

Agenda

• Brief Introduction to Parallel Computing

• Parallel Computing Paradigms

• Multi-Computers programming

• Multi-Processor Programming

• Discussions

3
Practical Parallel Programming Paradigms: Rajeev Wankar

Why do we need

powerful computers?

4
Practical Parallel Programming Paradigms: Rajeev Wankar

Some Challenging Computations
• Science

– Global climate modeling

– Astrophysical modeling

– Biology: genomics; protein folding; drug design

– Computational Chemistry

– Computational Material Sciences

• Engineering

– Crash simulation

– Semiconductor design

– Earthquake and structural modeling

– Computation fluid dynamics (airplane design)

– Combustion (engine design)

• Business

– Financial and economic modeling

– Transaction processing, web services and search engines

• Defense

– Nuclear weapons -- test by simulation

– Cryptography

5
Practical Parallel Programming Paradigms: Rajeev Wankar

Picture Source: Internet

6
Practical Parallel Programming Paradigms: Rajeev Wankar

Simulation

• Traditional scientific and engineering paradigm:

1) Do theory or paper design.

(First pillar of Science)

2) Perform experiments or build system.

(Second pillar of Science)

• Limitations:

▪ Too difficult -- build large wind tunnels.

▪ Too expensive -- build an experimental passenger jet.

▪ Too slow -- wait for climate evolution.

▪ Too dangerous -- weapons, drug design experiments.

7
Practical Parallel Programming Paradigms: Rajeev Wankar

Simulation

• Computational science paradigm: (Third pillar of
Science)

3) Use high performance computer systems to
simulate the phenomenon.

• Based on known physical laws and efficient
numerical methods.

Modeling is a way to create a virtual representation of a real-world system
that includes software and hardware.
Simulation is used to evaluate a new design, diagnose problems with an
existing design, and test a system under conditions that are hard to reproduce
in an actual system.

8
Practical Parallel Programming Paradigms: Rajeev Wankar

beyond

• What is forth pillar of Science?

• Wisdom is the ability to know what is true or
right, common sense or the collection of one's
knowledge.

Hey, A. J. G., Tansley, S., & Tolle, K. M. (2009). The fourth paradigm: data-intensive
scientific discovery. Redmond, WA: Microsoft Research.

9
Practical Parallel Programming Paradigms: Rajeev Wankar

Conventional Computer

Consists of a processor executing a program stored in a

(main) memory:

Each main memory location located by its address within

a single memory space.

Main memory

Processor

Instructions (to processor)

Data (to or from processor)

10
Practical Parallel Programming Paradigms: Rajeev Wankar

Serial Computing

• Traditionally, software has been written

for serial computation:

– A problem is broken into a discrete series of

instructions

– Instructions are executed sequentially one after

another

– Executed on a single processor

– Only one instruction may execute at any moment

in time

11
Practical Parallel Programming Paradigms: Rajeev Wankar

Serial Computing

12
Practical Parallel Programming Paradigms: Rajeev Wankar

Serial Computing

13
Practical Parallel Programming Paradigms: Rajeev Wankar

High Performance Computing (HPC)

• Traditionally, achieved by using the multiple computers

together - parallel computing.

• Simple idea! -- Using multiple computers (or processors)

simultaneously should be able to solve the problem

faster than a single computer.

14
Practical Parallel Programming Paradigms: Rajeev Wankar

Using multiple computers or processors

• Key concept - dividing problem into parts that can be

computed simultaneously.

• Parallel programming – solution of a problem using

multiple processes or multi computers.

• Concept very old (60 years).

15
Practical Parallel Programming Paradigms: Rajeev Wankar

Parallel Processing

16
Practical Parallel Programming Paradigms: Rajeev Wankar

Parallel Processing

17
Practical Parallel Programming Paradigms: Rajeev Wankar

Technology Trends: Microprocessor Capacity

Moore’s Law: #transistors/chip
doubles every 18 months

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder
of Intel) predicted in 1965
that the transistor density of
semiconductor chips would
double roughly every 18
months.

Slide source: Jack Dongarra

18
Practical Parallel Programming Paradigms: Rajeev Wankar

Performance improvement of the single processor

• Architectural: (Work Hard) amt. of work performed

per instruction cycle, bit parallel memory, bit parallel

arithmetic, cache, instruction pipelining, multiple

functional units etc.

• Technological: (Work Smart) reduce time needed per

instruction cycle. Speed of the electronic device is limited

by the speed of the light (It travels approximately a foot in

a nanosecond)

19
Practical Parallel Programming Paradigms: Rajeev Wankar

“Automatic” Parallelism in Modern Machines

• Bit level parallelism

– within floating point operations, etc.

• Instruction level parallelism

– multiple instructions execute per clock cycle

• Memory system parallelism

– overlap of memory operations with computation

• OS parallelism

– Multiple threads run in parallel on SMPs

There are limits to all of these -- for very high performance,

user must identify, schedule and coordinate parallel tasks

20
Practical Parallel Programming Paradigms: Rajeev Wankar

High Performance Computing (HPC)

• Traditionally, achieved by using the multiple computers

together - parallel computing

• Simple idea! Using multiple computers (or processors)

simultaneously should be able to solve the problem

faster than a single computer

• Dividing problem into parts that can be computed

simultaneously

21
Practical Parallel Programming Paradigms: Rajeev Wankar

Parallel Processing Terminology

• Parallel Processing is information processing that

emphasizes on the concurrent manipulation of the data

elements belonging to one or more processes solving a

single problem.

• A multiple processor computer capable of parallel

processing is parallel computer.

22
Practical Parallel Programming Paradigms: Rajeev Wankar

Parallel Processing Terminology

• Parallelism is a condition that arises when at least two

processes are executing simultaneously

• Concurrency is a condition that exists when at least two

processes are making progress.

• Concurrency is a more generalized form of parallelism

that can include time-slicing as a form of virtual

parallelism.

• In a multithreaded process on a single processor, the

processor can switch execution resources between

threads, resulting in concurrent execution.

23
Practical Parallel Programming Paradigms: Rajeev Wankar

Parallel Processing Terminology

Parallelism can be achieved by

Control parallelism(functional): Applying different operations to

different data elements simultaneously. Pipelining is a special case of

it in which the computation is divided in to segments or stages.

Ex. Assembly line of any car manufacturing process.

Data parallelism(domain): Multiple functional units apply same

operation simultaneously to elements of a data set.

Ex. Matrix addition.

24
Practical Parallel Programming Paradigms: Rajeev Wankar

Amdhal’s law: Let f be a fraction of operations in a

computation that must be performed sequentially,

where . The maximum speedup S achievable

by a parallel computer with P processors performing the

computation is

S
1

f 1 f–() P+

0 f 1

25
Practical Parallel Programming Paradigms: Rajeev Wankar

Maximum Speedup

Amdahl’s law

Serial section Parallelizable sections

(a) One processor

(b) Multiple
processors

fts (1 - f)ts

ts

(1 - f)ts /p
tp

p processors

26
Practical Parallel Programming Paradigms: Rajeev Wankar

Example 1

• If 95% of a program’s execution time occurs inside a

loop that can be executed in parallel. What is the

maximum speedup we should expect from a parallel

version of the program executing on 8 CPUs?

9.5
8/)05.01(05.0

1

−+
S

S
1

f 1 f–() P+

27
Practical Parallel Programming Paradigms: Rajeev Wankar

Serial Portion Parallel Portion

Processors Speedup

1 1

2 1.33

4 1.6

8 1.8
S

1

f 1 f–() P+

28
Practical Parallel Programming Paradigms: Rajeev Wankar

“The speedup is always limited by the

sequential portion of the code”

If Amdahl’s Law is applied

29
Practical Parallel Programming Paradigms: Rajeev Wankar

Amdahl’s Law Continue…

• Gustafson's law addresses the shortcomings of

Amdahl's law, which cannot scale to match

availability of computing power as the machine

size increases.

• It removes the fixed problem size or fixed

computation load constrains on the parallel

processors: instead, he proposed a fixed time

concept which leads to scaled speed up for

larger problem sizes.

30
Practical Parallel Programming Paradigms: Rajeev Wankar

Gustafson's Law

• Gustafson's Law (also known as Gustafson-Barsis'

law, 1988) states that any sufficiently large problem

can be efficiently parallelized. Gustafson's Law is

closely related to Amdahl's law, which gives a limit to

the degree to which a program can be sped up due to

parallelization.

where P is the number of processors, S is the

speedup, and α the sequential part of the process.

31
Practical Parallel Programming Paradigms: Rajeev Wankar

Processors Speedup

1 1

2 1.8

4 3.8

8 4.5

We require larger problem for large processors

Even if it still limited by serial portion,

It is less important

32
Practical Parallel Programming Paradigms: Rajeev Wankar

Commonly used paradigms

• Shared Memory (Multi-

Threading): In this

paradigm, multiple threads

of execution share a

common address space,

allowing them to directly

access and modify shared

data.

• Java and C/C++ (with

POSIX threads or OpenMP

directives).

CPU 1 CPU 2 CPU 3 CPU 4

Shared Memory

It simplifies programming, but developers need to manage

synchronization and data consistency explicitly.

33
Practical Parallel Programming Paradigms: Rajeev Wankar

• Message Passing: In the

message passing paradigm,

parallel tasks communicate

by explicitly sending and

receiving messages.

• This communication can

happen between processes

• Popular message passing

libraries and frameworks

include MPI, Apache Kafka

and RabbitMQ.

CPU 1 Memory

CPU 2 Memory

messages

Commonly used paradigms

34
Practical Parallel Programming Paradigms: Rajeev Wankar

• Data Parallelism: Data parallelism involves breaking

down large data sets into smaller chunks and

processing them simultaneously using the same

computation on different processors or cores.

• This approach is well-suited for tasks that can be

divided into independent units (DS) of work, such as

array operations.

• Data parallelism is often supported by libraries and

frameworks like OpenMP, CUDA (for GPU

programming), OpenACC and frameworks like

Apache Hadoop and Apache Spark.

Commonly used paradigms

35
Practical Parallel Programming Paradigms: Rajeev Wankar

• Task Parallelism: Task parallelism focuses on

dividing the program into smaller tasks that

can be executed independently or

asynchronously.

• Each task is assigned to a separate

processing unit for execution. This paradigm

is commonly used in frameworks like Intel

Threading Building Blocks (TBB), Microsoft's

Task Parallel Library (TPL), and frameworks

like Akka.

Commonly used paradigms

36
Practical Parallel Programming Paradigms: Rajeev Wankar

• Pipelining: Pipelining is a technique where

multiple stages of a computation are

overlapped and executed concurrently.

• Each stage performs a specific operation on

the data and passes it to the next stage.

• This approach is frequently used in signal

processing, graphics rendering, and network

packet processing.

Commonly used paradigms

37
Practical Parallel Programming Paradigms: Rajeev Wankar

• Hybrid Models: Many practical parallel

programming scenarios combine multiple

paradigms to take advantage of their

strengths.

• For example, a program might use shared

memory for communication between threads

running on the same processor and message

passing to communicate between different

processors or machines.

Commonly used paradigms

38
Practical Parallel Programming Paradigms: Rajeev Wankar

Message-Passing Computing

for Distributed Multi-Computers

PART-I

A review of basic concepts

39
Practical Parallel Programming Paradigms: Rajeev Wankar

Message-Passing Multicomputer

Complete computers connected through an interconnection

network:

Interconnection Network
Messages

Processor

Local

Memory

40
Practical Parallel Programming Paradigms: Rajeev Wankar

Programming a message-passing multicomputer can

be achieved by

Designing a special parallel programming language

Extending the syntax/reserved words of an existing

sequential high-level language to handle message

passing

Using an existing sequential high-level language and

providing a library of external procedures for

message passing

Programming

41
Practical Parallel Programming Paradigms: Rajeev Wankar

Involves dividing problem into parts (domain or functional)
that are intended to be executed simultaneously to solve the
problem

Each part executed by separate computers

Parts (processes) communicate by sending messages - the
only way to distribute data and collect result

Programming

42
Practical Parallel Programming Paradigms: Rajeev Wankar

Message Passing Parallel Programming

Software Tools

Parallel Virtual Machine (PVM) - developed in late 1980’s.

Became very popular.

Message-Passing Interface (MPI) - standard defined in

1990s.

Both provide a set of user-level libraries for message

passing. Use with regular programming languages

(FORTRAN, C, C++, ...).

43
Practical Parallel Programming Paradigms: Rajeev Wankar

Embarrassingly Parallel Computations

A computation that can be divided into a number of

completely independent parts, each of which can be

executed by a separate process(or).

No communication or very little communication between

processes

Input data

Processes

Results

44
Practical Parallel Programming Paradigms: Rajeev Wankar

❖ The phase-parallel model offers a

paradigm that is widely used in

parallel programming

❖ The parallel program consists of a

number of super steps, and each

has two phases.

❖ In a computation phase, multiple

processes each perform an

independent computation C.

❖ In the subsequent interaction

phase, the processes perform one

or more synchronous interaction

❖ operations, such as a barrier or a

blocking communication.

❖ Then next super step is executed.

Nearly embarrassing

45
Practical Parallel Programming Paradigms: Rajeev Wankar

❖ This paradigm is also known as

the master-slave paradigm.

❖ A master process executes the

essentially sequential part of

the parallel program and

spawns a number of slave

processes to execute the

parallel workload.

❖ When a slave finishes its

workload, it informs the master

which assigns a new workload

to the slave.

❖ This is a very simple paradigm,

where the coordination is done

by the master.

Process farm

46
Practical Parallel Programming Paradigms: Rajeev Wankar

MPI (Message Passing Interface)

Standard developed by group of academics and

industrial partners to foster more widespread use and

portability

Defines routines, not implementation

Several free implementations of MPI standard exist.

47
Practical Parallel Programming Paradigms: Rajeev Wankar

List of Few active products/projects

➢ CRI/EPCC

➢ Hitachi MPI

➢ HP MPI

➢ IBM Parallel Environment for AIX-MPI Library

➢ LAM/MPI (Supplier: Indiana University)

➢ MPI for UNICOS Systems

➢ MPICH (Supplier: Argonne National Laboratory)

➢ OS/390 Unix System Services Parallel

➢ RACE-MPI

➢ SGI Message Passing Toolkit

➢ Sun MPI

48
Practical Parallel Programming Paradigms: Rajeev Wankar

List of Few active products/projects

➢ CRI/EPCC

➢ Hitachi MPI

➢ HP MPI

➢ IBM Parallel Environment for AIX-MPI Library

➢ Open MPI

➢ MPI for UNICOS Systems

➢ MPICH (Supplier: Argonne National Laboratory)

➢ OS/390 Unix System Services Parallel

➢ RACE-MPI

➢ SGI Message Passing Toolkit

➢ Sun MPI

49
Practical Parallel Programming Paradigms: Rajeev Wankar

❖ A message-passing library specification

▪ Not a compiler specification

▪ Not a specific product

❖ Used for parallel computers, clusters, and heterogeneous
networks as a message passing library

❖ Designed to be used for the development of parallel software
libraries

❖ Designed to provide access to advanced parallel hardware for

▪ End users

▪ Library writers

▪ Tool developers

What is MPI

50
Practical Parallel Programming Paradigms: Rajeev Wankar

Where to use MPI?

• We need a portable parallel program

• We are writing a parallel Library

Why learn MPI?

• Portable

• Expressive

• Good way to learn about subtle issues in parallel
computing

• Universal acceptance

52
Practical Parallel Programming Paradigms: Rajeev Wankar

Cluster of Computers – Features

➢A Compute Cluster is a type of parallel or distributed processing

system, which consists of a collection of interconnected stand-alone

computers cooperatively working together as a single, integrated

computing resources. “stand-alone” (whole) computer that can be

used on its own (full hardware and OS)

➢Collection of nodes physically connected over commodity/ proprietary

network

➢Cluster computer is a collection of complete independent

workstations or Symmetric Multi Processors

➢Network is a decisive factors for scalability issues (especially for fine

grain applications)

➢High volumes driving high performance

➢Network using commodity components and proprietary architecture is

becoming the trend

53
Practical Parallel Programming Paradigms: Rajeev Wankar

Cluster system architecture

Sequential Applications
Sequential Applications

Sequential Applications

Parallel Applications

Parallel Applications

Parallel Applications

54
Practical Parallel Programming Paradigms: Rajeev Wankar Source: Internet

55
Practical Parallel Programming Paradigms: Rajeev Wankar

Common Cluster Modes

• High Performance (dedicated)

• High Throughput (idle cycle collection)

• High Availability

56
Practical Parallel Programming Paradigms: Rajeev Wankar

Users View of Cluster

The users view the entire cluster as Single system, which has multiple

processors. The user could say: “Execute my application using five

processors.” This is different from a distributed system.

➢ Single Entry

➢ Single File Hierarchy

➢ Single Networking

➢ Single Input/Output

➢ Single Point of Control

➢ Single Memory Space

➢ Single Job Management System

➢ Single User Interface

➢ Single Process Space

➢ Single System

➢ Symmetry

➢ Location Transparent

57
Practical Parallel Programming Paradigms: Rajeev Wankar

Basics of Message-Passing

Programming

Two primary mechanisms needed:

1. A method of creating separate processes for execution

on different computers

2. A method of sending and receiving messages

58
Practical Parallel Programming Paradigms: Rajeev Wankar

Single Program Multiple Data (SPMD) model

Different processes merged into one program. Within

program,control statements select different parts for each

processor to execute. All executables start together -

static process creation.

Basic MPI way

PN-1

Source file

Compile to suit
processors

Executables

P0

59
Practical Parallel Programming Paradigms: Rajeev Wankar

Source file

Compile to suit
processors

P0 PN-1

60
Practical Parallel Programming Paradigms: Rajeev Wankar

Evaluating General Message

Message Passing SPMD : C program

main (int argc, char **argv)

{

if (process is to become a controller process)

{

Controller (/* Arguments /*);

}

else

{

Worker (/* Arguments /*);

}

}

62
Practical Parallel Programming Paradigms: Rajeev Wankar

MPICH

MPICH is an open-source, portable implementation of

the Message-Passing Interface Standard.

Designed at Mathematics and Computer Science

Division of Argonne National Laboratory.

The “CH" in MPICH stands for symbol of

adaptability to one's environment and thus of

portability.

Chameleon

64
Practical Parallel Programming Paradigms: Rajeev Wankar

Is MPICH Large or Small?

MPICH is large (>210 Functions)

• MPICH’s extensive functionality requires many functions

• Number of functions not necessarily a measure of

complexity

MPICH is small (6 Functions)

• Many parallel programs can be written with just 6 basic

functions

MPICH is just right candidate for message passing

• One need not master all parts of MPICH to use it

66
Practical Parallel Programming Paradigms: Rajeev Wankar

Some Basic Concepts

• Processes can be collected into groups

• Each message is sent in a context, and must be

received in the same context

• A group and context together form a communicator

• A process is identified by its rank in the group

associated with a communicator

• There is a default communicator whose group

contains all initial processes, called
MPI_COMM_WORLD

67
Practical Parallel Programming Paradigms: Rajeev Wankar

Begin programming with 6 MPI function calls

• MPI_INIT Initializes MPI

• MPI_COMM_SIZE Determines number of processes

• MPI_COMM_RANK Determines the label of the

calling process

• MPI_SEND Sends a message

• MPI_RECV Receives a message

• MPI_FINALIZE Terminates MPI

68
Practical Parallel Programming Paradigms: Rajeev Wankar

MPI Datatypes

• The data in a message to send or receive is
described by a triple (address, count, datatype),
where

• An MPI datatype is recursively defined as:

– predefined, corresponding to a data type from the
language (e.g., MPI_INT, MPI_DOUBLE)

– a contiguous array of MPI datatypes

– a strided block of datatypes

– an indexed array of blocks of datatypes

– an arbitrary structure of datatypes

• There are MPI functions to construct custom
datatypes, in particular ones for subarrays

69
Practical Parallel Programming Paradigms: Rajeev Wankar

C data types

• MPI_CHAR

char

• MPI_BYTE

like unsigned char

• MPI_SHORT

short

• MPI_INT

int

• MPI_LONG

long

• MPI_FLOAT

float

• MPI_DOUBLE

double

• MPI_UNSIGNED_CHAR

unsigned char

• MPI_UNSIGNED_SHORT

unsigned short

• MPI_UNSIGNED

unsigned int

• MPI_UNSIGNED_LONG

unsigned long

• MPI_LONG_DOUBLE

long double (some
systems may not
implement)

• MPI_LONG_LONG_INT

long long (some systems
may not implement)

70
Practical Parallel Programming Paradigms: Rajeev Wankar

MPI_Op Options (Collective Operation)

◼ MPI_BAND

◼ MPI_BOR

◼ MPI_BXOR

◼ MPI_LAND

◼ MPI_LOR

◼ MPI_LXOR

◼ MPI_MAX

◼ MPI_MAXLOC*

◼ MPI_MIN

◼ MPI_MINLOC

◼ MPI_PROD

◼ MPI_SUM

* Maximum and Location

71
Practical Parallel Programming Paradigms: Rajeev Wankar

Communicators

Defines scope of a communication operation.

Processes have ranks associated with the communicator.

Initially, all processes enrolled in a “universe” called

MPI_COMM_WORLD and each process is given a unique

rank, a number from 0 to n - 1, where there are n

processes.

Other communicators can be established for groups of

processes.

72
Practical Parallel Programming Paradigms: Rajeev Wankar

MPI_COMM_WORLD communicator

This Default Communicator is MPI’s mechanism for

establishing individual communication universes

1
0

2

3 4

5
6

MPI_COMM_WORLD

73
Practical Parallel Programming Paradigms: Rajeev Wankar

MPI Messages

Message : data (3 parameters) + envelope (3 parameters)

Data: startbuf, count, datatype

• Startbuf: address where the data starts

• Count: number of elements (items) of data in the message

Envelope: dest, tag, comm

• Destination or Source: Sending or Receiving processes

• Tag: Integer to distinguish messages

Communicator:

The communicator is communication “universe.”

Messages are sent or received within a given “universe.”

74
Practical Parallel Programming Paradigms: Rajeev Wankar

Synchronous Message Passing (Blocking)

Routines that actually return when message transfer

completed.

Synchronous send routine Waits until complete

message can be accepted by the receiving process

before sending the next message.

Synchronous receive routine Waits until the message it

is expecting arrives.

Synchronous routines intrinsically perform two actions:

They transfer data and they synchronize processes.

75
Practical Parallel Programming Paradigms: Rajeev Wankar

Asynchronous Message Passing (Non-Blocking)

Routines that do not wait for actions to complete before

returning. Usually require local storage for messages.

More than one version depending upon the actual

semantics for returning.

In general, they do not synchronize processes but allow

processes to move forward sooner. Must be used with

care.

76
Practical Parallel Programming Paradigms: Rajeev Wankar

MPICH Send and Recv

• Communication between two processes

• Source process sends message to destination

process

• Communication takes place within a

communicator

• Destination process is identified by its rank in the

communicator

77
Practical Parallel Programming Paradigms: Rajeev Wankar

Parameters of the blocking send

MPI_Send(buf, count, datatype, dest, tag, comm)

Address of Data type of Message tag

Send buffer each item

Number of items Rank of destination

to send process Communicator

78
Practical Parallel Programming Paradigms: Rajeev Wankar

MPI Basic (Blocking) Send

• When this function returns, the data has been delivered

to the system and the buffer can be reused.

79
Practical Parallel Programming Paradigms: Rajeev Wankar

Parameters of the blocking receive

MPI_Recv(buf, count, datatype, src, tag, comm, status)

Address of Data type of Message tag Status after

receive buffer each item operation

Maximum number Rank of source

of items to receive process Communicator

80
Practical Parallel Programming Paradigms: Rajeev Wankar

MPI Basic (Blocking) Receive

• Waits until a matching (both source and tag) message is

received from the system, and the buffer can be used

• source is rank in communicator specified by comm, or

MPI_ANY_SOURCE

• tag is a tag to be matched on or MPI_ANY_TAG

• receiving fewer than count occurrences of datatype is OK,

but receiving more is an error

• status contains further information (e.g. size of message)

82
Practical Parallel Programming Paradigms: Rajeev Wankar

Message Tag

Used to differentiate between different types of messages

being sent.

Message tag is carried within message.

If special type matching is not required, a wild card
message tag is used, so that the recv() will match with

any send().

83
Practical Parallel Programming Paradigms: Rajeev Wankar

Message Tag Example

To send a message x with message tag 5 from a source

process 1 to a destination process 2 and assign to y:

send(&x,2,5)

Process 1

x

recv(&y,1,5)

Process 2

y

Data
movement

Waits for a message from process 1 with a tag of 5

84
Practical Parallel Programming Paradigms: Rajeev Wankar

Initializing MPICH

• Must be first routine called

• int MPI_Init(int *argc, char **argv);

85
Practical Parallel Programming Paradigms: Rajeev Wankar

What makes an MPICH Program?

Include files

• mpi.h (c)

• mpif.h (Fortran)

Initiation of MPI

• MPI_INIT

Completion of MPI

• MPI_FINALIZE

86
Practical Parallel Programming Paradigms: Rajeev Wankar

MPI include file

#include <mpi.h>

void main (int argc, char **argv)

{

int np, rank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&np);

/* Do Some Works */

MPI_Finalize();

}

variable declarations #include <mpi.h>

void main (int argc, char **argv)

{

int np, rank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&np);

/* Do Some Works */

MPI_Finalize();

}

General MPI Program Structure

Initialize MPI environment

#include <mpi.h>

void main (int argc, char **argv)

{

int np, rank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&np);

/* Do Some Works */

MPI_Finalize();

}

Do work and make

message passing calls

#include <mpi.h>

void main (int argc, char **argv)

{

int np, rank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&np);

/* Do Some Works */

MPI_Finalize();

}

Terminate MPI Environment

#include <mpi.h>

void main (int argc, char **argv)

{

int np, rank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&np);

/* Do Some Works */

MPI_Finalize();

}

87
Practical Parallel Programming Paradigms: Rajeev Wankar

MPI_Init

❖ The command line arguments are provided to

MPI_Init to allow an MPI implementation to

use them in initializing the MPI environment.

❖ They are passed by reference to allow an

MPI implementation to provide them in

environments where the command-line

arguments are not provided to main function.

88
Practical Parallel Programming Paradigms: Rajeev Wankar

MPI_Init

❖ At least one process has access to stdin,

stdout, and stderr

❖ The user can find out which process this is by

querying the attribute MPI_IO on MPI_COM

WORLD

❖ In MPICH all processes have access to stdin,

stdout, and stderr and on networks these

I/O streams are routed back to the process with

rank 0 in MPI_COMM_WORLD.

89
Practical Parallel Programming Paradigms: Rajeev Wankar

MPI_Init

❖ On most systems, these streams also can be
redirected through mpirun, as follows

mpirun –np 64 myprog -myarg 13 <data.in>

results.out

❖ Here we assume that –myarg 13 are

command-line arguments processed by the

application myprog. After MPI_Init, each
process will have these arguments in its argv

90
Practical Parallel Programming Paradigms: Rajeev Wankar

Example
To send an integer x from process 0 to process 1,

MPI_Comm_rank(MPI_COMM_WORLD,&myrank); /* find rank */

if (myrank == 0) {

int x;

MPI_Send(&x, 1, MPI_INT, 1, msgtag,

MPI_COMM_WORLD);

} else if (myrank == 1) {

int x;

MPI_Recv(&x, 1, MPI_INT, 0,msgtag,

MPI_COMM_WORLD, status);

}

91
Practical Parallel Programming Paradigms: Rajeev Wankar

Let us write the first Complete C/MPICH program

92
Practical Parallel Programming Paradigms: Rajeev Wankar

Write a simple parallel program in which every

process with rank greater than 0 sends a message

“Hello-Participants” to a process with rank 0. The

processes with rank 0 receives the message and

prints it.

93
Practical Parallel Programming Paradigms: Rajeev Wankar

#include “mpi.h”

main (int argc, char **argv) {

int MyRank, Numprocs, tag, ierror, i;

MPI_Status status;

char send_message[20], recv_message[20];

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &Numprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &MyRank);

tag = 100;

strcpy (send_message, “Hello-Participants”);

if (MyRank==0) {

for (i=1; i<Numprocs; i++) {

MPI_Recv (recv_message,20, MPI_CHAR, i, tag, MPI_COMM_WORLD,&status);

printf (“node %d : %s \n”, i, recv_message);

}

} else

MPI_Send(send_message, 20, MPI_CHAR,0, tag, MPI_COMM_WORLD);

MPI_Finalize();

}

94
Practical Parallel Programming Paradigms: Rajeev Wankar

Cluster at CMSD

• Total number of cores over all the compute nodes

(42) is 1680 (40 cores per node) and the number of

threads is 3360 (intel hyper threading);

• Peak performance is ~120TFlops

• Maximum overall performance of the HPCF is ~100

TFlops.

96
Practical Parallel Programming Paradigms: Rajeev Wankar

97
Practical Parallel Programming Paradigms: Rajeev Wankar

98
Practical Parallel Programming Paradigms: Rajeev Wankar

99
Practical Parallel Programming Paradigms: Rajeev Wankar

Compiling/executing (SPMD) C/MPICH program

To compile MPI programs:

mpicc -o file file.c

Or

mpiCC -o file file.cpp

To execute MPI program: mpirun -np no_processes file

101
Practical Parallel Programming Paradigms: Rajeev Wankar

10.2.0.53

14.139.69.97

	Slide 1
	Slide 2: Agenda
	Slide 3: Why do we need powerful computers?
	Slide 4: Some Challenging Computations
	Slide 5
	Slide 6: Simulation
	Slide 7: Simulation
	Slide 8: beyond
	Slide 9: Conventional Computer
	Slide 10: Serial Computing
	Slide 11: Serial Computing
	Slide 12: Serial Computing
	Slide 13: High Performance Computing (HPC)
	Slide 14: Using multiple computers or processors
	Slide 15: Parallel Processing
	Slide 16: Parallel Processing
	Slide 17: Technology Trends: Microprocessor Capacity
	Slide 18: Performance improvement of the single processor
	Slide 19: “Automatic” Parallelism in Modern Machines
	Slide 20: High Performance Computing (HPC)
	Slide 21: Parallel Processing Terminology
	Slide 22: Parallel Processing Terminology
	Slide 23: Parallel Processing Terminology
	Slide 24
	Slide 25: Maximum Speedup Amdahl’s law
	Slide 26: Example 1
	Slide 27
	Slide 28
	Slide 29: Amdahl’s Law Continue…
	Slide 30: Gustafson's Law
	Slide 31
	Slide 32: Commonly used paradigms
	Slide 33
	Slide 34: Commonly used paradigms
	Slide 35: Commonly used paradigms
	Slide 36: Commonly used paradigms
	Slide 37: Commonly used paradigms
	Slide 38: Message-Passing Computing for Distributed Multi-Computers
	Slide 39: Message-Passing Multicomputer
	Slide 40: Programming
	Slide 41: Programming
	Slide 42: Message Passing Parallel Programming Software Tools
	Slide 43
	Slide 44
	Slide 45
	Slide 46: MPI (Message Passing Interface)
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Common Cluster Modes
	Slide 56
	Slide 57: Basics of Message-Passing Programming
	Slide 58: Single Program Multiple Data (SPMD) model
	Slide 59:
	Slide 60
	Slide 62: MPICH
	Slide 64
	Slide 66: Some Basic Concepts
	Slide 67
	Slide 68: MPI Datatypes
	Slide 69: C data types
	Slide 70
	Slide 71: Communicators
	Slide 72
	Slide 73
	Slide 74: Synchronous Message Passing (Blocking)
	Slide 75: Asynchronous Message Passing (Non-Blocking)
	Slide 76
	Slide 77: Parameters of the blocking send
	Slide 78: MPI Basic (Blocking) Send
	Slide 79: Parameters of the blocking receive
	Slide 80: MPI Basic (Blocking) Receive
	Slide 82: Message Tag
	Slide 83: Message Tag Example
	Slide 84
	Slide 85
	Slide 86: General MPI Program Structure
	Slide 87: MPI_Init
	Slide 88: MPI_Init
	Slide 89: MPI_Init
	Slide 90: Example
	Slide 91
	Slide 92
	Slide 93
	Slide 94: Cluster at CMSD
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 101

